At Hillside, we use the CPA approach within our maths lessons (CPA - Concretel Pictorial/ Abstract). The CPA approach builds
 pictorial representations, to abstract symbols and problems. The different stages are defined in detail belour.

Concrete step of CPA

 (concrete) objects.

For example, if a problem involves adding pieces of fruit, children can first handle actual fruit. From there, they can progress to handling manipulatives such as counters or cubes which represent the fruit.

Pictorial step of CPA

 the problem.
 visualise abstract problems and make them more accessible.

Abstract step of CPA

 numbers, notation, and mathematical symbols (for example, +,,$- x$, $)$ to indicate addition, multiplication or division.

 young, can see the connections between each representation.

We also use the philosophy of:

- fluency

- reasoning
problem-solving

 information they have learned.

The aim is that when children leave Hillside they:

 division)

- Make use of jottings, diagrams and informal notes to help record steps and part ansuers when using mental methods that generate more information than can be kept in their heads
 to perform a calculation mentally

Progression in Calculations

Addition

Objective
Concrete
Pictorial
Abstract
Strategie
Strategies

Year I Addition

Given a number, identify one more and one less
Represent and use number bonds and related subtraction facts within 20
Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$.

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number one by one to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$12+5=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 . This is an essential skill for column addition later σn.	Start with the bigger number and use the smaller number to make 10 . $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$6+5=11$ If I am at six, how many more do I need to make 10 ? How many more do I add on now to get to II?
Represent and use number bonds and related	19 +1900		Emphasis should be on the language: '2 more than 5 is equal to 7'

subtraction facts within 20.	2 more than 5	 0 0 gala	'2 more than 5 is 7' '7 is 2 more than 5' Use of STEM sentences to promote this language: - more than - is equal to _-' '- more than - is -' '- is _ more than _'
Objective and Strategies	Concrete	Pictorial	Abstract
Year 2 Additio Use place valu derive and us Add and subtra and $\mathrm{O}+\mathrm{O}+\mathrm{O}$ Show that addi another cannot Solve problems Recognise and solve missing	and number facts to related facts up to 1 ct numbers using conc ion of two numbers with addition and subtr se the inverse relatio number problems.	s recall and use addition and subtractio ctorial representations, and mentally, inc any order (commutative) and subtraction concrete, pictorial and abstract represen addition and subtraction and use this	facts to 20 fluently, and uding: $\mathrm{TU}+\mathrm{O}, \mathrm{TO}+\mathrm{T}, \mathrm{TU}+\mathrm{TO}$ of one number from ations check calculations and

Adding multiples of 10	$50+30=80$ Model using Dienes and bead strings	The beads represent a numberline where we jump to 50 first, then make three jumps of ten. Use representations for Dienes blocks.	$\begin{aligned} & 30+50=80 \\ & 80=30+50 \\ & 30+-=80 \end{aligned}$
Use known number facts. Part, part, whole	Children explore ways of making number bonds within 20.		$\begin{gathered} \text { 20 } \\ \square+\square=20 \\ \square+\square=\square \\ \square+\square=20 \end{gathered} \quad 20-\square=\square$ \square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 - \square $=1$

Using known facts	Use Dienes to represent related additions. $3+3=6$	Children draw representations of hundreds, tens and ones The bottom squares represent hundreds: $300+300=600$	$3+3=6$ leads to $30+30=60$ leads to $300+300=600$
Bar Model		1111 111 1111111	$4+3=7$
Add a two digit number and ones	Use ten frame to make magic 10 . Children explore the pattern $17+5=22$ $27+5=32$	Use part, part, whole and number line to model.	$17+5=22$22 17 5 Explore related facts: $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \end{aligned}$

Using part whole model to add a twodigit number to another two-digit number	Explore that the ones digit does not change.	Use a number line and bridge ten using part, whole if necessary. An example for solving $47+25$:	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\ldots=57 \end{aligned}$ $\begin{gathered} \begin{array}{c} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{array} \end{gathered}$

Adding two 2-digit numbers	By the end of the year, moving onto exchanging ten ones for a ten block	A pictorial representation of how the exchange is shown. This exchanging of the ones into tens would come towards the end of the yea: The diagram above shows ten Is exchanged for a ten	$25+36=61$
Adding three single digits using grouping	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Strategies

Year 3 Addition
Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Estimate the ansuer to a calculation and use inverse operations to check ansurers
 Progress to formal uritten methods calculations

Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Model using PV counters. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. To show an exchange, they can cross out the pictorial representation of and add an extra pictorial syhmbol under the column to the left. It is important to put this symbol underneath the left hand column, separate to the rest of the symbols so we can see that it has been exchanged (exchanged numbers sit underneath the line in a formal written method).	$\begin{array}{lll} 1 & 4 & 5 \\ 5 & 3 & 7 \\ \hline 6 & 8 & 2 \end{array}$
Objective and Strategies	Concrete	Pictorial	Abstract
Year 4 Addition Add and subtrac appropriate Estimate and us Solve addition Solve simple me	numbers with up to 4 digits using inverse operations to check answers d subtraction two-step problems in sure and money problems involving	formal written methods of columnar addition o a calculation ntexts, deciding which operations and methods ractions and decimals to two decimal places	tion wh why

Add numbers	
with up to 4	
digits.	
Add decimals with 2 decimal places, including money.	Children continue to use Dienes or PV counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.
$2634+4517$	

Note: Again, the exchanged symbols are carried beneath the other symbols, as represented in the abstract formal method.

Before exchange:

For the purpose of this document, a photograph was taken before and after the exchange. There is no need to write this out twice.

Continue carrying hundreds as well as tens.

Relate to money and measures.

Add and subtract whole numbers with more than 4 digits, including using formal written methods
Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving number up to three decimal places

- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why - Solve problems involving addition, subtraction, multiplication and division . Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy				
Add several numbers of increasing complexity. Including adding money, measures and decimals with different numbers or decimal points.	Two exchanges taking place in the calculation Then the hundredths would be exchanged for a tenth.	ones (1) (1) (1) (1) (1)		Move to the abstract method ensuring children line the decimal points correctly. $$

Subtraction

Strategies

Year I Subtraction
Given a number, identify one more and one less
Represent and use number bonds and related subtraction facts within 20
Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$.
$\left.\begin{array}{|c|l|l|l|l|l|}\hline \text { Taking away ones } \\ \text { Use physical objects, counters, cubes } \\ \text { etc to show how objects can be taken } \\ \text { away. } \\ 15-3\end{array} \begin{array}{l}\text { Cross out drawn objects to show what has } \\ \text { been taken away. }\end{array}\right]-3=$?

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. $13-4=?$

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference.	Count on to find the difference. Draw bars to find the difference between 2 Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. numbers.	Hannah has 3 sandwiches, Helen has 5 sandwiches. Find the difference between the number of sandwiches. Tom works 5 days a week and Kate works 3 days a week.

Represent and use number bonds and related subtraction facts within 20. Part, part, whole model.	Link to addition- use the part, part, whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part, part, whole model.	Move to using numbers within the part whole model.
Make 10	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 14. Take away 4 to reach 10. Then take away the remaining I so you have taken away 5 altogether. You have reached your answer.	$14-5=$ How many do we take off to reach the next IO? How many do we have left to take off?

| Bar Model |
| :--- | :--- |

Partitioning to subtract without regrouping	$34-13=21$ Use dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and	$43-21=22$
Making ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.,	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to the next ten and then the rest.	$93-76=17$
Counting back	Use a bead bar or bead strings to model counting back in tens and then ones Start with 57 beads and then move 2 tens then 2 ones to the left. Start from	This can progress all the way to counting back using two 2-digit numbers.	$57-23=34$

	the left hand side of the string so that the tens are easily visible.		
Objective and Strategies	Concrete	Pictorial	Abstract
Year 3 Subtraction Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Estimate the answer to a calculation and use inverse operations to check answers Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction			
Column method without exchange	75-42 Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$7{ }^{7}$ $-\quad 4 \quad 2$ 33 This will lead to a clear written column subtraction.

Strategies

Year 5 Subtraction
Add and subtract whole numbers with more than 4 digits, including using formal written methods
Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Subtract with at least four digits, including money and measures.	As above Apply skills to problem solving, reasoning and fluency questions. Children should still be promoted to use a range of manipulatives. The greater the range of manipulatives used the greater level of mastery children will have.	As above Apply skills to problem solving, reasoning and fluency questions. Children should still be promoted to use a range of manipulatives. The greater the range of manipulatives used the greater level of mastery children will have.	As above Apply skills to problem solving, reasoning and fluency questions. Children should still be promoted to use a range of manipulatives. The greater the range of manipulatives used the greater level of mastery children will have.
Objective and Strategies	Concrete	Pictorial	Abstract
Year 6 Subtractio Use their knowled Solve addition and why Solve problems in Use estimation to accuracy	of the order of operations to carr subtraction multi-step problems $v o l v i n g$ addition, subtraction, multip check answers to calculations and	y out calculations involving the four op contexts, deciding which operations and ication and division etermine, in the context of a problem, an	rations methods to use and appropriate degree of
Subtract with increasingly large and more complex numbers	As above. There is a greater requirement to have a mastery of abstract	As above. There is a greater requirement to have a mastery of abstract concepts at this	Subtractions problems should include numbers with a different amount of

with decimal values.	concepts at this point. Children should still have the fundamental knowledge provided through the CPA appraoch but must be able to fluently and accurately use abstract methods to solve calculations.	point. Children should still have the fundamental knowledge provided through the CPA appraoch but must be able to fluently and accurately use abstract methods to solve calculations.	decimal places or different amount of digits. Children should 'pad' these numbers out with a zero as a place holder, as shown below. $\begin{array}{r} { }^{\circ 14} 810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \times 10.5 \cdot 34149 \mathrm{~kg} \\ \hline 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

